.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/example_caching.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_example_caching.py: Example demonstrating the use of the caching decorator. ======================================================= Caches the results of fitness evaluations in a pickle file ('example_caching_cache.pkl'). To illustrate its practical use, compare the runtime of this script when you first call it vs. the second time and when you comment out the decorator on `inner_objective`. .. GENERATED FROM PYTHON SOURCE LINES 10-17 .. code-block:: default import time import numpy as np import cgp .. GENERATED FROM PYTHON SOURCE LINES 18-19 We define the target function for this example. .. GENERATED FROM PYTHON SOURCE LINES 19-25 .. code-block:: default def f_target(x): return x ** 2 + x + 1.0 .. GENERATED FROM PYTHON SOURCE LINES 26-31 We then define the objective function for the evolutionary algorithm: It consists of an inner objective which we wrap with the caching decorator. This decorator specifies a pickle file that will be used for caching results of fitness evaluations. The inner objective is then used by the objective function to compute (or retrieve from cache) the fitness of the individual. .. GENERATED FROM PYTHON SOURCE LINES 31-66 .. code-block:: default @cgp.utils.disk_cache( "example_caching_cache.pkl", compute_key=cgp.utils.compute_key_from_sympy_expr_and_args ) def inner_objective(ind): """The caching decorator uses the function parameters to identify identical function calls. Here, as many different genotypes produce the same simplified SymPy expression we can use these avoid reevaluating functionally identical individuals. Note that caching only makes sense for deterministic objective functions, as it assumes that identical expressions will always return the same fitness values. """ expr = ind.to_sympy() loss = [] for x0 in np.linspace(-2.0, 2.0, 100): y = float(expr.subs({"x_0": x0}).evalf()) loss.append((f_target(x0) - y) ** 2) time.sleep(0.25) # emulate long fitness evaluation return np.mean(loss) def objective(individual): if not individual.fitness_is_None(): return individual individual.fitness = -inner_objective(individual) return individual .. GENERATED FROM PYTHON SOURCE LINES 67-69 Next, we define the parameters for the population, the genome of individuals, and the evolutionary algorithm. .. GENERATED FROM PYTHON SOURCE LINES 69-90 .. code-block:: default params = { "population_params": {"n_parents": 10, "seed": 8188211}, "ea_params": { "n_offsprings": 10, "tournament_size": 1, "mutation_rate": 0.05, "n_processes": 1, }, "genome_params": { "n_inputs": 1, "n_outputs": 1, "n_columns": 10, "n_rows": 2, "levels_back": 2, "primitives": (cgp.Add, cgp.Sub, cgp.Mul, cgp.ConstantFloat), }, "evolve_params": {"max_generations": 200, "termination_fitness": -1e-12}, } .. GENERATED FROM PYTHON SOURCE LINES 91-92 We then create a Population instance and instantiate the evolutionary algorithm. .. GENERATED FROM PYTHON SOURCE LINES 92-97 .. code-block:: default pop = cgp.Population(**params["population_params"], genome_params=params["genome_params"]) ea = cgp.ea.MuPlusLambda(**params["ea_params"]) .. GENERATED FROM PYTHON SOURCE LINES 98-99 Finally, we call the `evolve` method to perform the evolutionary search. .. GENERATED FROM PYTHON SOURCE LINES 99-105 .. code-block:: default cgp.evolve(pop, objective, ea, **params["evolve_params"], print_progress=True) print(f"evolved function: {pop.champion.to_sympy()}") .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [2/200] max fitness: -2.360269360269361 [3/200] max fitness: -2.360269360269361 [4/200] max fitness: -2.360269360269361 [5/200] max fitness: -1.0 [6/200] max fitness: -1.0 [7/200] max fitness: -1.0 [8/200] max fitness: -1.0 [9/200] max fitness: -1.0 [10/200] max fitness: -1.0 [11/200] max fitness: -1.0 [12/200] max fitness: -1.0 [13/200] max fitness: -1.0 [14/200] max fitness: -1.0 [15/200] max fitness: -1.0 [16/200] max fitness: -1.0 [17/200] max fitness: -1.0 [18/200] max fitness: -1.0 [19/200] max fitness: -1.0 [20/200] max fitness: -1.0 [21/200] max fitness: -1.0 [22/200] max fitness: -1.0 [23/200] max fitness: -1.0 [24/200] max fitness: -1.0 [25/200] max fitness: -1.0 [26/200] max fitness: -1.0 [27/200] max fitness: -1.0 [28/200] max fitness: -1.0 [29/200] max fitness: -1.0 [30/200] max fitness: -1.0 [31/200] max fitness: -1.0 [32/200] max fitness: -1.0 [33/200] max fitness: -1.0 [34/200] max fitness: -1.0 [35/200] max fitness: -1.0 [36/200] max fitness: -1.0 [37/200] max fitness: -1.0 [38/200] max fitness: -1.0 [39/200] max fitness: -1.0 [40/200] max fitness: -1.0 [41/200] max fitness: -1.0 [42/200] max fitness: -1.0 [43/200] max fitness: -1.0 [44/200] max fitness: -1.0 [45/200] max fitness: -1.0 [46/200] max fitness: -1.0 [47/200] max fitness: -1.0 [48/200] max fitness: -1.0 [49/200] max fitness: -1.0 [50/200] max fitness: -1.0 [51/200] max fitness: -1.0 [52/200] max fitness: -1.0 [53/200] max fitness: -1.0 [54/200] max fitness: -1.0 [55/200] max fitness: -1.0 [56/200] max fitness: -1.0 [57/200] max fitness: -1.0 [58/200] max fitness: -1.0 [59/200] max fitness: -1.0 [60/200] max fitness: -1.0 [61/200] max fitness: -1.0 [62/200] max fitness: -1.0 [63/200] max fitness: -1.0 [64/200] max fitness: -1.0 [65/200] max fitness: -1.0 [66/200] max fitness: -1.0 [67/200] max fitness: -1.0 [68/200] max fitness: -1.0 [69/200] max fitness: -1.0 [70/200] max fitness: -1.0 [71/200] max fitness: -1.0 [72/200] max fitness: -1.0 [73/200] max fitness: -1.0 [74/200] max fitness: -1.0 [75/200] max fitness: -1.0 [76/200] max fitness: -1.0 [77/200] max fitness: -1.0 [78/200] max fitness: -1.0 [79/200] max fitness: -1.0 [80/200] max fitness: -1.0 [81/200] max fitness: -1.0 [82/200] max fitness: -1.0 [83/200] max fitness: -1.0 [84/200] max fitness: -1.0 [85/200] max fitness: -1.0 [86/200] max fitness: -1.0 [87/200] max fitness: -1.0 [88/200] max fitness: -1.0 [89/200] max fitness: -1.0 [90/200] max fitness: -1.0 [91/200] max fitness: -1.0 [92/200] max fitness: -1.0 [93/200] max fitness: -1.0 [94/200] max fitness: -1.0 [95/200] max fitness: -1.0 [96/200] max fitness: -1.0 [97/200] max fitness: -1.0 [98/200] max fitness: -1.0 [99/200] max fitness: -1.0 [100/200] max fitness: -1.0 [101/200] max fitness: -1.0 [102/200] max fitness: -1.0 [103/200] max fitness: -1.0 [104/200] max fitness: -1.0 [105/200] max fitness: -1.0 [106/200] max fitness: -1.0 [107/200] max fitness: -1.0 [108/200] max fitness: -1.0 [109/200] max fitness: -1.0 [110/200] max fitness: -1.0 [111/200] max fitness: -1.0 [112/200] max fitness: -1.0 [113/200] max fitness: -1.0 [114/200] max fitness: -1.0 [115/200] max fitness: -1.0 [116/200] max fitness: -1.0 [117/200] max fitness: -1.0 [118/200] max fitness: -1.0 [119/200] max fitness: -1.0 [120/200] max fitness: -1.0 [121/200] max fitness: -1.0 [122/200] max fitness: -4.930380657631324e-34 evolved function: x_0**2 + x_0 + 1.0 .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 17.806 seconds) .. _sphx_glr_download_auto_examples_example_caching.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: example_caching.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: example_caching.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_