.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/example_fec_caching.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_example_fec_caching.py: Example demonstrating the use of the caching decorator with functional equivalance checking =========================================================================================== Caches the results of fitness evaluations in a pickle file (``example_fec_caching_cache.pkl``). To illustrate its practical use, compare the runtime of this script when you first call it vs. the second time and when you comment out the decorator on `inner_objective`. .. GENERATED FROM PYTHON SOURCE LINES 12-21 .. code-block:: default import functools import multiprocessing as mp import time import numpy as np import cgp .. GENERATED FROM PYTHON SOURCE LINES 22-23 We define the target function for this example. .. GENERATED FROM PYTHON SOURCE LINES 23-29 .. code-block:: default def f_target(x): return x ** 2 + x + 1.0 .. GENERATED FROM PYTHON SOURCE LINES 30-38 We then define the objective function for the evolutionary algorithm: It consists of an inner objective which we wrap with the caching decorator. This decorator specifies a pickle file that will be used for caching results of fitness evaluations. In addition the decorator accepts keyword arguments that specifiy the statistic of the samples used for evaluation. The inner objective is then used by the objective function to compute (or retrieve from cache) the fitness of the individual. .. GENERATED FROM PYTHON SOURCE LINES 38-81 .. code-block:: default @cgp.utils.disk_cache( "example_fec_caching_cache.pkl", compute_key=functools.partial( cgp.utils.compute_key_from_numpy_evaluation_and_args, _seed=12345, _min_value=-10.0, _max_value=10.0, _batch_size=5, ), file_lock=mp.Lock(), ) def inner_objective(ind): """The caching decorator uses the return values generated from providing random inputs to ind.to_numpy() to identify functionally indentical individuals and avoid reevaluating them. Note that caching only makes sense for deterministic objective functions, as it assumes that identical phenotypes will always return the same fitness values. """ f = ind.to_func() loss = [] for x_0 in np.linspace(-2.0, 2.0, 100): y = f(x_0) loss.append((f_target(x_0) - y) ** 2) time.sleep(0.25) # emulate long fitness evaluation return np.mean(loss) def objective(individual): if not individual.fitness_is_None(): return individual individual.fitness = -inner_objective(individual) return individual .. GENERATED FROM PYTHON SOURCE LINES 82-84 Next, we define the parameters for the population, the genome of individuals, and the evolutionary algorithm. .. GENERATED FROM PYTHON SOURCE LINES 84-105 .. code-block:: default params = { "population_params": {"n_parents": 10, "seed": 8188211}, "ea_params": { "n_offsprings": 10, "tournament_size": 1, "mutation_rate": 0.05, "n_processes": 1, }, "genome_params": { "n_inputs": 1, "n_outputs": 1, "n_columns": 10, "n_rows": 2, "levels_back": 2, "primitives": (cgp.Add, cgp.Sub, cgp.Mul, cgp.ConstantFloat), }, "evolve_params": {"max_generations": 200, "termination_fitness": -1e-12}, } .. GENERATED FROM PYTHON SOURCE LINES 106-107 We then create a Population instance and instantiate the evolutionary algorithm. .. GENERATED FROM PYTHON SOURCE LINES 107-112 .. code-block:: default pop = cgp.Population(**params["population_params"], genome_params=params["genome_params"]) ea = cgp.ea.MuPlusLambda(**params["ea_params"]) .. GENERATED FROM PYTHON SOURCE LINES 113-114 Finally, we call the `evolve` method to perform the evolutionary search. .. GENERATED FROM PYTHON SOURCE LINES 114-120 .. code-block:: default cgp.evolve(pop, objective, ea, **params["evolve_params"], print_progress=True) print(f"evolved function: {pop.champion.to_sympy()}") .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [2/200] max fitness: -2.360269360269361 [3/200] max fitness: -2.360269360269361 [4/200] max fitness: -2.360269360269361 [5/200] max fitness: -1.0 [6/200] max fitness: -1.0 [7/200] max fitness: -1.0 [8/200] max fitness: -1.0 [9/200] max fitness: -1.0 [10/200] max fitness: -1.0 [11/200] max fitness: -1.0 [12/200] max fitness: -1.0 [13/200] max fitness: -1.0 [14/200] max fitness: -1.0 [15/200] max fitness: -1.0 [16/200] max fitness: -1.0 [17/200] max fitness: -1.0 [18/200] max fitness: -1.0 [19/200] max fitness: -1.0 [20/200] max fitness: -1.0 [21/200] max fitness: -1.0 [22/200] max fitness: -1.0 [23/200] max fitness: -1.0 [24/200] max fitness: -1.0 [25/200] max fitness: -1.0 [26/200] max fitness: -1.0 [27/200] max fitness: -1.0 [28/200] max fitness: -1.0 [29/200] max fitness: -1.0 [30/200] max fitness: -1.0 [31/200] max fitness: -1.0 [32/200] max fitness: -1.0 [33/200] max fitness: -1.0 [34/200] max fitness: -1.0 [35/200] max fitness: -1.0 [36/200] max fitness: -1.0 [37/200] max fitness: -1.0 [38/200] max fitness: -1.0 [39/200] max fitness: -1.0 [40/200] max fitness: -1.0 [41/200] max fitness: -1.0 [42/200] max fitness: -1.0 [43/200] max fitness: -1.0 [44/200] max fitness: -1.0 [45/200] max fitness: -1.0 [46/200] max fitness: -1.0 [47/200] max fitness: -1.0 [48/200] max fitness: -1.0 [49/200] max fitness: -1.0 [50/200] max fitness: -1.0 [51/200] max fitness: -1.0 [52/200] max fitness: -1.0 [53/200] max fitness: -1.0 [54/200] max fitness: -1.0 [55/200] max fitness: -1.0 [56/200] max fitness: -1.0 [57/200] max fitness: -1.0 [58/200] max fitness: -1.0 [59/200] max fitness: -1.0 [60/200] max fitness: -1.0 [61/200] max fitness: -1.0 [62/200] max fitness: -1.0 [63/200] max fitness: -1.0 [64/200] max fitness: -1.0 [65/200] max fitness: -1.0 [66/200] max fitness: -1.0 [67/200] max fitness: -1.0 [68/200] max fitness: -1.0 [69/200] max fitness: -1.0 [70/200] max fitness: -1.0 [71/200] max fitness: -1.0 [72/200] max fitness: -1.0 [73/200] max fitness: -1.0 [74/200] max fitness: -1.0 [75/200] max fitness: -1.0 [76/200] max fitness: -1.0 [77/200] max fitness: -1.0 [78/200] max fitness: -1.0 [79/200] max fitness: -1.0 [80/200] max fitness: -1.0 [81/200] max fitness: -1.0 [82/200] max fitness: -1.0 [83/200] max fitness: -1.0 [84/200] max fitness: -1.0 [85/200] max fitness: -1.0 [86/200] max fitness: -1.0 [87/200] max fitness: -1.0 [88/200] max fitness: -1.0 [89/200] max fitness: -1.0 [90/200] max fitness: -1.0 [91/200] max fitness: -1.0 [92/200] max fitness: -1.0 [93/200] max fitness: -1.0 [94/200] max fitness: -1.0 [95/200] max fitness: -1.0 [96/200] max fitness: -1.0 [97/200] max fitness: -1.0 [98/200] max fitness: -1.0 [99/200] max fitness: -1.0 [100/200] max fitness: -1.0 [101/200] max fitness: -1.0 [102/200] max fitness: -1.0 [103/200] max fitness: -1.0 [104/200] max fitness: -1.0 [105/200] max fitness: -1.0 [106/200] max fitness: -1.0 [107/200] max fitness: -1.0 [108/200] max fitness: -1.0 [109/200] max fitness: -1.0 [110/200] max fitness: -1.0 [111/200] max fitness: -1.0 [112/200] max fitness: -1.0 [113/200] max fitness: -1.0 [114/200] max fitness: -1.0 [115/200] max fitness: -1.0 [116/200] max fitness: -1.0 [117/200] max fitness: -1.0 [118/200] max fitness: -1.0 [119/200] max fitness: -1.0 [120/200] max fitness: -1.0 [121/200] max fitness: -1.0 [122/200] max fitness: -4.930380657631324e-34 evolved function: x_0**2 + x_0 + 1.0 .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 13.252 seconds) .. _sphx_glr_download_auto_examples_example_fec_caching.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: example_fec_caching.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: example_fec_caching.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_