.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/example_parametrized_nodes.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_example_parametrized_nodes.py: Example for evolutionary regression with parametrized nodes =========================================================== Example demonstrating the use of Cartesian genetic programming for a regression task that requires fine tuning of constants in parametrized nodes. This is achieved by introducing a new node, "ParametrizedAdd" which produces a scaled and shifted version of the sum of its inputs. .. GENERATED FROM PYTHON SOURCE LINES 11-36 .. code-block:: default # The docopt str is added explicitly to ensure compatibility with # sphinx-gallery. docopt_str = """ Usage: example_parametrized_nodes.py [--max-generations=] Options: -h --help --max-generations= Maximum number of generations [default: 500] """ import functools import math import matplotlib.pyplot as plt import numpy as np import scipy.constants import torch from docopt import docopt import cgp args = docopt(docopt_str) .. GENERATED FROM PYTHON SOURCE LINES 37-44 We first define a new node that adds the values of its two inputs then scales and finally shifts the result. The scale ("w") and shift factors ("b") are parameters that are adapted by local search. We need to define the arity of the node, callables for the initial values for the parameters and the operation of the node as a string. In this string parameters are enclosed in angle brackets, inputs are denoted by "x_i" with i representing their corresponding index. .. GENERATED FROM PYTHON SOURCE LINES 44-60 .. code-block:: default class ParametrizedAdd(cgp.OperatorNode): """A node that adds its two inputs. The result of addition is scaled by w and shifted by b. Both these parameters can be adapted via local search are passed on from parents to their offspring. """ _arity = 2 _initial_values = {"": lambda: 1.0, "": lambda: 0.0} _def_output = " * (x_0 + x_1) + " .. GENERATED FROM PYTHON SOURCE LINES 61-64 We define a target function which contains numerical constants that are not available as constants for the search and need to be found by local search on parameterized nodes. .. GENERATED FROM PYTHON SOURCE LINES 64-70 .. code-block:: default def f_target(x): return math.pi * (x[:, 0] + x[:, 1]) + math.e .. GENERATED FROM PYTHON SOURCE LINES 71-77 Then we define a differentiable(!) inner objective function for the evolution. This function accepts a torch class as a parameter. It returns the mean-squared error between the output of the forward pass of this class and the target function evaluated on a set of random points. This inner objective is then used by actual objective function to determine the fitness of the individual. .. GENERATED FROM PYTHON SOURCE LINES 77-98 .. code-block:: default def inner_objective(f, seed): torch.manual_seed(seed) batch_size = 500 x = torch.DoubleTensor(batch_size, 2).uniform_(-5, 5) y = f(x) return torch.nn.MSELoss()(f_target(x), y[:, 0]) def objective(individual, seed): if not individual.fitness_is_None(): return individual f = individual.to_torch() loss = inner_objective(f, seed) individual.fitness = -loss.item() return individual .. GENERATED FROM PYTHON SOURCE LINES 99-102 Next, we define the parameters for the population, the genome of individuals, the evolutionary algorithm, and the local search. Note that we add the custom node defined above as a primitive. .. GENERATED FROM PYTHON SOURCE LINES 102-120 .. code-block:: default population_params = {"n_parents": 1, "seed": 818821} genome_params = { "n_inputs": 2, "n_outputs": 1, "n_columns": 5, "n_rows": 1, "levels_back": None, "primitives": (ParametrizedAdd, cgp.Add, cgp.Sub, cgp.Mul), } ea_params = {"n_offsprings": 4, "tournament_size": 1, "mutation_rate": 0.04, "n_processes": 2} evolve_params = {"max_generations": int(args["--max-generations"]), "termination_fitness": 0.0} local_search_params = {"lr": 1e-3, "gradient_steps": 9} .. GENERATED FROM PYTHON SOURCE LINES 121-123 We then create a Population instance and instantiate the local search and evolutionary algorithm. .. GENERATED FROM PYTHON SOURCE LINES 123-135 .. code-block:: default pop = cgp.Population(**population_params, genome_params=genome_params) local_search = functools.partial( cgp.local_search.gradient_based, objective=functools.partial(inner_objective, seed=population_params["seed"]), **local_search_params, ) ea = cgp.ea.MuPlusLambda(**ea_params, local_search=local_search) .. GENERATED FROM PYTHON SOURCE LINES 136-137 We define a recording callback closure for bookkeeping of the progression of the evolution. .. GENERATED FROM PYTHON SOURCE LINES 137-148 .. code-block:: default history = {} history["fitness_champion"] = [] history["expr_champion"] = [] def recording_callback(pop): history["fitness_champion"].append(pop.champion.fitness) history["expr_champion"].append(pop.champion.to_sympy()) .. GENERATED FROM PYTHON SOURCE LINES 149-152 We fix the seed for the objective function to make sure results are comparable across individuals and, finally, we call the `evolve` method to perform the evolutionary search. .. GENERATED FROM PYTHON SOURCE LINES 152-157 .. code-block:: default obj = functools.partial(objective, seed=population_params["seed"]) cgp.evolve(pop, obj, ea, **evolve_params, print_progress=True, callback=recording_callback) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [2/500] max fitness: -127.01931908693929 [3/500] max fitness: -127.01931908693929 [4/500] max fitness: -127.01931908693929 [5/500] max fitness: -5.7621478742860965 [6/500] max fitness: -4.400266790086014 [7/500] max fitness: -3.3439171938076777 [8/500] max fitness: -2.5221616375748344 [9/500] max fitness: -1.886291288388642 [10/500] max fitness: -1.3981594801407393 [11/500] max fitness: -1.027024955717336 [12/500] max fitness: -0.7477863327318205 [13/500] max fitness: -0.5399321058490655 [14/500] max fitness: -0.3868341292604577 [15/500] max fitness: -0.2751900492412008 [16/500] max fitness: -0.19452652473250845 [17/500] max fitness: -0.13673494099465527 [18/500] max fitness: -0.09563997095003499 [19/500] max fitness: -0.06661059705457541 [20/500] max fitness: -0.046222253258311974 [21/500] max fitness: -0.031973909639731866 [22/500] max fitness: -0.02205885115609153 [23/500] max fitness: -0.01518420142810349 [24/500] max fitness: -0.010432247679957566 [25/500] max fitness: -0.007156051160756987 [26/500] max fitness: -0.004902206168242835 [27/500] max fitness: -0.003354500929279119 [28/500] max fitness: -0.0022933114582781846 [29/500] max fitness: -0.0015666233077337203 [30/500] max fitness: -0.0010695205965242655 [31/500] max fitness: -0.0007297666386346675 [32/500] max fitness: -0.0004977239202683268 [33/500] max fitness: -0.00033934028308000566 [34/500] max fitness: -0.00023128736715539105 [35/500] max fitness: -0.0001576015752678627 [36/500] max fitness: -0.00010736927896605433 [37/500] max fitness: -7.313509670770486e-05 [38/500] max fitness: -4.980933852908367e-05 [39/500] max fitness: -3.391918703676957e-05 [40/500] max fitness: -2.3096096228535896e-05 [41/500] max fitness: -1.5725246069023054e-05 [42/500] max fitness: -1.0706019354335675e-05 [43/500] max fitness: -7.288451067003709e-06 [44/500] max fitness: -4.961616392292634e-06 [45/500] max fitness: -3.3774988989541173e-06 [46/500] max fitness: -2.2990801926213286e-06 [47/500] max fitness: -1.564956210506372e-06 [48/500] max fitness: -1.0652249266356427e-06 [49/500] max fitness: -7.25058544542861e-07 [50/500] max fitness: -4.935131658081641e-07 [51/500] max fitness: -3.359072595462748e-07 [52/500] max fitness: -2.2863140927698259e-07 [53/500] max fitness: -1.556141119044658e-07 [54/500] max fitness: -1.059154323848727e-07 [55/500] max fitness: -7.208869798177893e-08 [56/500] max fitness: -4.906515782366229e-08 [57/500] max fitness: -3.33947068058455e-08 [58/500] max fitness: -2.2729022729656698e-08 [59/500] max fitness: -1.5469732821737942e-08 [60/500] max fitness: -1.0528923586553802e-08 [61/500] max fitness: -7.166125354812942e-09 [62/500] max fitness: -4.877353378342053e-09 [63/500] max fitness: -3.31958310056805e-09 [64/500] max fitness: -2.2593444953407397e-09 [65/500] max fitness: -1.5377333234503386e-09 [66/500] max fitness: -1.0465965912643985e-09 [67/500] max fitness: -7.123236680097046e-10 [68/500] max fitness: -4.848141005422031e-10 [69/500] max fitness: -3.299688575234535e-10 [70/500] max fitness: -2.2457971871821608e-10 [71/500] max fitness: -1.5285090235237916e-10 [72/500] max fitness: -1.0403162728212182e-10 [73/500] max fitness: -7.080480056918192e-11 .. GENERATED FROM PYTHON SOURCE LINES 158-160 After the evolutionary search has ended, we print the expression with the highest fitness and plot the progression of the search. .. GENERATED FROM PYTHON SOURCE LINES 160-185 .. code-block:: default print(f"Final expression {pop.champion.to_sympy()} with fitness {pop.champion.fitness}") print("Best performing expression per generation (for fitness increase > 0.5):") old_fitness = -np.inf for i, (fitness, expr) in enumerate(zip(history["fitness_champion"], history["expr_champion"])): delta_fitness = fitness - old_fitness if delta_fitness > 0.5: print(f"{i:3d}: {fitness}, {expr}") old_fitness = fitness print(f"{i:3d}: {fitness}, {expr}") width = 9.0 fig = plt.figure(figsize=(width, width / scipy.constants.golden)) ax_fitness = fig.add_subplot(111) ax_fitness.set_xlabel("Generation") ax_fitness.set_ylabel("Fitness") ax_fitness.set_yscale("symlog") ax_fitness.axhline(0.0, color="k") ax_fitness.plot(history["fitness_champion"], lw=2) plt.savefig("example_parametrized_nodes.pdf", dpi=300) .. image:: /auto_examples/images/sphx_glr_example_parametrized_nodes_001.png :alt: example parametrized nodes :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Final expression 3.1415928340353736*x_0 + 3.1415928340353736*x_1 + 2.7182734383513227 with fitness -7.080480056918192e-11 Best performing expression per generation (for fitness increase > 0.5): 0: -127.01931908693929, x_1 4: -5.7621478742860965, 3.1337934090450837*x_0 + 3.1337934090450837*x_1 + 0.31836625198458554 5: -4.400266790086014, 3.1565329832083608*x_0 + 3.1565329832083608*x_1 + 0.62085799830068183 6: -3.3439171938076777, 3.15892017999446*x_0 + 3.15892017999446*x_1 + 0.89027846015470884 7: -2.5221616375748344, 3.1597540007392134*x_0 + 3.1597540007392134*x_1 + 1.1311091306962316 8: -1.886291288388642, 3.1595918340334699*x_0 + 3.1595918340334699*x_1 + 1.3460568187315501 10: -1.027024955717336, 3.1575106310584499*x_0 + 3.1575106310584499*x_1 + 1.7062610297769132 13: -0.3868341292604577, 3.1529224955139751*x_0 + 3.1529224955139751*x_1 + 2.0975544857381176 72: -7.080480056918192e-11, 3.1415928340353736*x_0 + 3.1415928340353736*x_1 + 2.7182734383513227 .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 8.940 seconds) .. _sphx_glr_download_auto_examples_example_parametrized_nodes.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: example_parametrized_nodes.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: example_parametrized_nodes.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_