hal-cgp
  • Installation
  • Basic usage
  • Documentation
  • Examples
  • API reference
    • High-level API
    • CGP Population structure
    • Nodes
    • Evolutionary Algorithms
    • Local search
  • References
  • Citation
hal-cgp
  • »
  • API reference »
  • Local search
  • View page source

Local search¶

cgp.local_search.gradient_based(individual: cgp.individual.IndividualBase, objective: Callable[[Union[torch.nn.Module, List[torch.nn.Module]]], torch.Tensor], lr: float, gradient_steps: int, optimizer: Optional[Optimizer] = None, clip_value: Optional[float] = None) → None[source]¶

Perform a local search for numeric leaf values for an individual based on gradient information obtained via automatic differentiation.

individualIndividual

Individual for which to perform local search.

objectiveCallable

Objective function that is called with a differentiable graph and returns a differentiable loss.

lrfloat

Learning rate for optimizer.

gradient_stepsint

Number of gradient steps per individual.

optimizertorch.optim.Optimizer, optional

Optimizer to use for parameter updates. Defaults to torch.optim.SGD.

clip_valuefloat, optional

Clipping value for gradients. Clipping is skipped when set to np.inf. Defaults to 10% of the inverse of the learning rate so that the maximal update step is 0.1.

Next Previous

© Copyright 2020, Happy Algorithms League.

0.2.0
Other Versions